首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4620篇
  免费   303篇
  国内免费   963篇
  2024年   3篇
  2023年   73篇
  2022年   85篇
  2021年   119篇
  2020年   143篇
  2019年   146篇
  2018年   121篇
  2017年   127篇
  2016年   176篇
  2015年   166篇
  2014年   181篇
  2013年   357篇
  2012年   212篇
  2011年   228篇
  2010年   176篇
  2009年   220篇
  2008年   196篇
  2007年   251篇
  2006年   270篇
  2005年   267篇
  2004年   256篇
  2003年   278篇
  2002年   232篇
  2001年   195篇
  2000年   183篇
  1999年   139篇
  1998年   106篇
  1997年   147篇
  1996年   124篇
  1995年   92篇
  1994年   86篇
  1993年   76篇
  1992年   65篇
  1991年   60篇
  1990年   64篇
  1989年   41篇
  1988年   43篇
  1987年   32篇
  1986年   13篇
  1985年   25篇
  1984年   24篇
  1983年   14篇
  1982年   21篇
  1981年   14篇
  1980年   8篇
  1979年   7篇
  1978年   5篇
  1977年   5篇
  1976年   6篇
  1973年   4篇
排序方式: 共有5886条查询结果,搜索用时 17 毫秒
91.
Phosphate (Pi) transporters mediate acquisition and transportation of Pi within plants. Here, we investigated the functions of OsPht1;4 (OsPT4), one of the 13 members of the Pht1 family in rice. Quantitative real‐time RT‐PCR analysis revealed strong expression of OsPT4 in roots and embryos, and OsPT4 promoter analysis using reporter genes confirmed these findings. Analysis using rice protoplasts showed that OsPT4 localized to the plasma membrane. OsPT4 complemented a yeast mutant defective in Pi uptake, and also facilitated increased accumulation of Pi in Xenopus oocytes. Further, OsPT4 genetically modified (GM) rice lines were generated by knockout/knockdown or over‐expression of OsPT4. Pi concentrations in roots and shoots were significantly lower and higher in knockout/knockdown and over‐expressing plants, respectively, compared to wild‐type under various Pi regimes. 33Pi uptake translocation assays corroborated the altered acquisition and mobilization of Pi in OsPT4 GM plants. We also observed effects of altered expression levels of OsPT4 in GM plants on the concentration of Pi, the size of the embryo, and several attributes related to seed development. Overall, our results suggest that OsPT4 encodes a plasma membrane‐localized Pi transporter that facilitates acquisition and mobilization of Pi, and also plays an important role in development of the embryo in rice.  相似文献   
92.
Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild‐type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non‐hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane‐permeable auxin 1‐naphthalene acetic acid. Treatment with the auxin transport inhibitors 1‐naphthoxyacetic acid and N‐1‐naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species‐mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress.  相似文献   
93.
Ecological speciation plays a primary role in driving species divergence and adaptation. Oryza rufipogon and Oryza nivara are two incipient species at the early stage of speciation with distinct differences in morphology, life history traits and habitat preference, and therefore provide a unique model for the study of ecological speciation. However, the population genetic structure of the ancestral O. rufipogon has been controversial despite substantial study, and the origin of the derivative O. nivara remains unclear. Here, based on sequences of 10 nuclear and two chloroplast loci from 26 wild populations across the entire geographic ranges of the two species, we conducted comprehensive analyses using population genetics, phylogeography and species distribution modelling (SDM) approaches. In addition to supporting the two previously reported major subdivisions, we detected four genetically distinct groups within O. rufipogon and found no correlation between the genetic groups and either species identity or geographical regions. The SDM clearly showed substantial change in the distribution range of O. rufipogon in history, demonstrating that the repeated extinction and colonization of local populations due to multiple glacial–interglacial cycles during the Quaternary was most likely the main factor shaping the confounding population genetic structure of O. rufipogon. Moreover, we found significant differences between the two species in climate preferences, suggestive of an important role for climatic factors in the adaptation, persistence and expansion of O. nivara. Finally, based on the genetic pattern and dynamics of the O. nivara populations, we hypothesize that O. nivara might have independently originated multiple times from different O. rufipogon populations.  相似文献   
94.
为了探索生物质焦对糠醛的吸附脱除特性,利用流化床快速热解制得稻壳焦,研究N2、CO2气氛下高温改性方式对稻壳焦孔隙特征与表面性质的影响,以及稻壳焦对糠醛的吸附脱除特性。采用元素分析、N2等温吸脱附、傅里叶红外、Boehm滴定等方法对稻壳焦的孔隙结构与表面化学特性进行表征。结果表明:原始的稻壳焦残留大量有机基团,孔隙结构较差;经N2和CO2高温改性后,稻壳焦表面的含氧酸性官能团大量分解,碱性官能团增加,比表面积和孔结构得到较好的扩充和优化,稻壳焦与糠醛的π-π色散力作用力增强。综合考虑π-π色散力和表面吸附位点的作用,CO2改性的稻壳焦表现出了最好的吸附效果。  相似文献   
95.
Sensitivity to azoxystrobin and kresoxim‐methyl of 80 single‐spore isolates of Magnaporthe oryzae was determined. The EC50 values for azoxystrobin and kresoxim‐methyl in inhibiting mycelial growth of the 80 M. oryzae isolates were 0.006–0.056 and 0.024–0.287 µg mL?1, respectively. The EC50 values for azoxystrobin and kresoxim‐methyl in inhibiting conidial germination of the M. oryzae populations were 0.004–0.051 and 0.012–0.105 µg mL?1, respectively. There was significant difference in sensitivity to azoxystrobin or kresoxim‐methyl between the tested isolates representing differential sensitivity to carbendazim (MBC) and kitazin P (IBP); however, there was no correlation between this difference in sensitivity to azoxystrobin or kresoxim‐methyl and sensitivity to MBC or IBP, indicating that there was no cross‐resistance between azoxystrobin or kresoxim‐methyl and MBC or IBP. In the protective and curative experiments, kresoxim‐methyl exhibited higher protective and curative activity than azoxystrobin when applied at 150 and 250 µg mL?1 accordingly, while azoxystrobin exhibited stronger inhibitory activity against M. oryzae isolates than that of kresoxim‐methyl in the in vitro test. The results of field experiments also suggested that both azoxystrobin and kresoxim‐methyl at 187.5 g.a.i. ha?1 gave over 73% control efficacy in both sites, exhibiting excellent activity against rice blast. Taken together, azoxystrobin and kresoxim‐methyl could be a good substitute for MBC or IBP for controlling rice blast in China, but should be carefully used as they were both at‐risk.  相似文献   
96.
97.
98.
Auxin and brassinosteroid (BR) are important phytohormones for controlling lamina inclination implicated in plant architecture and grain yield. But the molecular mechanism of auxin and BR crosstalk for regulating lamina inclination remains unknown. Auxin response factors (ARFs) control various aspects of plant growth and development. We here report that OsARF19‐overexpression rice lines show an enlarged lamina inclination due to increase of its adaxial cell division. OsARF19 is expressed in various organs including lamina joint and strongly induced by auxin and BR. Chromatin immunoprecipitation (ChIP) and yeast one‐hybrid assays demonstrate that OsARF19 binds to the promoter of OsGH3‐5 and brassinosteroid insensitive 1 (OsBRI1) directing their expression. OsGH3‐5‐overexpression lines show a similar phenotype as OsARF19‐O1. Free auxin contents in the lamina joint of OsGH3‐5‐O1 or OsARF19‐O1 are reduced. OsGH3‐5 is localized at the endoplasmic retieulum (ER) matching reduction of the free auxin contents in OsGH3‐5‐O1. osarf19‐TDNA and osgh3‐5‐Tos17 mutants without erected leaves show a function redundancy with other members of their gene family. OsARF19‐overexpression lines are sensitive to exogenous BR treatment and alter the expressions of genes related to BR signalling. These findings provide novel insights into auxin and BR signalling, and might have significant implications for improving plant architecture of monocot crops.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号